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I. Summary 

 
In this report, I assess the feasibility of using Mie scattering to quantify the diameter 
distribution of 3He bubbles in DT ice layers.  Mie scattering methods are often used for 
diameter measurements of particulates in emulsions like pigments and ink products. This 
suggests that similar techniques could be used to measure the distribution of 3He bubbles 
in DT ice layers, which is important for NIF ICF capsules. To investigate the achievable 
performance of bubble diameter measurements using Mie scattering, I performed 
numerical modeling using exact analytical expressions. 
 
Mie scattering is light scattering by spherical particulates which have different refractive 
indices than their surrounding medium. Mie’s theoretical model of this problem applies 
to diffraction by any number of spheres that are all of the same diameter and composition, 
provided they are randomly distributed and separated from each other by distances that 
are large compared to the light scattering wavelength. [1] 
 
When a sample which has particulates of a single radius a (i.e. a monodisperse system) is 
illuminated by monochromatic and polarized laser light (wavelength λ), the angular 
distribution of the scattered light has a peak in the forward direction along with several 
narrow minima. The number and angular directions of the minima are specific to the 
particle size normalized by the wavelength (a/ λ). Therefore it is possible to infer the 
particle size by measuring the angular distribution of the scattered light.  However, when 
the bubble sizes are distributed in diameter (i.e. a polydisperse system), the angular 
distribution of the scattered light is given by the linear summation of the scattering from 
each bubble. Therefore, the dips in the angular profile are smoothed out, and it becomes 
difficult to infer the diameter distribution from the angular distribution alone in 
polydisperse systems.  
 



In addition to monochromatic laser illumination, it is also possible to illuminate the 
samples with white un-polarized light and to observe the spectra of scattered light from 
one or more directions. Similar to the monochromatic illumination described above, the 
spectrum of scattered light has narrow dips at specific wavelengths related to the bubble 
diameter.  In polydisperse system, however, the observed spectrum is the sum of 
scattering light rays from bubbles with various sizes. Therefore, the spectral dips are 
smoothed out, and it is again difficult to use the dips to measure the bubble size 
distribution in polydisperse systems. 
 
A well-known variation of the static particle size distribution measurements described 
above is the dynamic light scattering method. When the scattering centers are undergoing 
Brownian motion in a liquid matrix, the size of the particles and their speed of diffusion 
can be related using knowledge of the viscosity of the medium [2]. By measuring 
temporal fluctuations of the light scattered by particulates and analyzing the self 
correlation of the signal, it is possible to measure the size distribution of the particulates 
in polydisperse systems. This technique is applicable to a wide diameter range, even for 
particles smaller than the light wavelength (down to ~ 10nm).  However, the 3He bubbles 
in DT ice layers do not undergo Brownian motion, and more specifically the relation of 
bubble size and migration speed is not known. Therefore, dynamic light scattering 
methods are not easily adaptable to the present application. 
 
Because of these reasons, it will be difficult to measure the population of bubbles using 
either static or dynamic Mie scattering methods.  However, it may still be possible to 
infer the bubble size distribution by analyzing the spectrum of the scattered light. 
Qualitatively, light scattering by bubbles can be classified into two different regions, 
Rayleigh and Mie scattering.  The transition between these scattering regimes is 

characterized by a function of a dimensionless parameter
 ( )( )2 Iq aπ λ=

 (bubble radius: 
a, wavelength of light in surrounding medium: λ(I))†, 
 
    (1) Rayleigh scattering, q < 0.4       
  Cross-section σ ~ λ-4 (the reason for a blue sky)  

(2) Mie scattering, 0.4 < q  < 3 
  Cross-section σ ~ roughly independent to λ   (the reason for a white cloud).  
 
Even in polydisperse systems, this significant spectral transition (from Rayleigh to Mie 
scattering in the wavelength domain) may be observable. The bubble distribution 
function could then be inferred by fitting the observed spectrum using a back propagation 
method. 

                                                 
† The notation used in this document follows that of  Born and Wolf. A subscript of a shoulder of lambda 
expresses the wavelength in the media surrounding the bubbles. 



 
II. Background 

 
In NIF ignition experiments, a mixture of deuterium and tritium will be used as fuel. To 
ignite the fuel, very high temperatures and densities have to be established 
simultaneously. This requires an implosion with very high spherical symmetry.  Any 
perturbations, such as drive non-uniformities, roughness on the shell surfaces, or 
imperfections in the DT ice layers, can trigger fluid instabilities that will interfere with 
the uniformity of the implosion.  
 
Tritium is a radioactive isotope which has a half life of 12.26 years. After beta decay, it 
converts to 3He. The 3He atoms produced in the DT ice layer migrate in the ice layer by 
diffusion, and a significant fraction of them reach to the ice-gas boundary and enter the 
gas region. Therefore, the gas pressure in the shell increases in time due to the increase in 
3He pressure.  As the 3He atoms migrate, they localize in DT ice imperfections and form 
bubbles.  Since the mass density of the gas in the bubbles is 3 orders of magnitude less 
than the surrounding ice, the resulting perturbations can trigger fluid instabilities during 
the implosion.  The allowable degree of fluid instability therefore sets a requirement on 
the presence of  3He bubbles within the ice, and it is important to characterize the 3He 
bubble density in the DT ice layer in order to determine whether the requirements are 
satisfied. 
 
Several different techniques have been considered to infer the 3He bubble population: 

 1) Imaging with x-ray or visible light 
 2) Scattering or diffraction of VUV/visible light, 
 3) Magnetic resonance microscopy  

For bubbles which have relatively large diameter (> 0.5µm), imaging with visible or x-
ray microscopy is possible. However, due to limited spatial resolution, imaging of 
bubbles smaller than 0.5 µm is not practical. Even small bubbles can seed mass 
perturbations if they are not uniformly distributed in the ice layer, and so we need to 
employ a method which has good sensitivity to bubbles smaller than the resolution limit 
of imaging systems. 
 
In the last decade, significant progress has been made in the field of magnetic resonance 
microscopy (MRM).  Because MRM directly measures the three dimensional distribution 
of isotopes, this technique is interesting for application to the measurement of unevenly 
distributed tritium in DT ice layers. However, the spatial resolution of this technique is 
still comparable to optical microscopy (~1 µm).  Signal-to-noise and contrast will also be 
low, requiring long scanning times. 

 
This memo assesses the expected performance of bubble size distribution measurements 
with static Mie scattering, considering both angular distributions and spectral 
distributions as diagnostics of the bubble size distribution. 



III. Modeling of Mie scattering 
 

Fig. 1. sketches the experiment geometry.  The refractive indices of the surrounding 
media nI and the bubble nII are set to 1.2 and 1.0 regardless of the light wavelength. The 
intensity of the light scattered by Mie scattering is calculated as a function of the 
deflection angle θ and the light wavelength λ [3]. 

 

 
Fig. 1. Schematic diagram of model used in calculation of Mie scattering  
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 where eBl and mBl are complex amplitudes of electric and magnetic partial waves, 
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 ψ(ρ) are ζ( ρ) expressed by Bessel functions and Neumann functions, 
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The addition of a prime to the functions ψ(ρ), ζ( ρ) and P( ρ) denotes differentiation with 
respect to their arguments.  The intensity of scattered light which has electric vector 
along θ and φ directions is calculated with the Poynting vector, 
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IV. Angular distribution of light scattered by bubbles 

 
Expected angular distribution of uniform-size bubbles (monodisperse systems) 
 
As a first step, the angular distribution of scattered light was calculated for different 
bubble sizes. As expected, the angular profile of the distribution is determined by the 

dimensionless parameter
 ( )( )2 Iq aπ λ=

. When the void diameter is smaller than the 
wavelength (a < λ), the angular distribution of the scattered light has less structure and 
has a broad peak in the forward direction (Rayleigh scattering). When the void diameter 
is larger than the wavelength (Mie scattering), the angular distribution of the scattered 
light is forward oriented and has more resonance peaks. Fig. 2 below indicates that, 
 
(1) Light rays scattered by Mie scattering is strongly forward oriented, 
(2) Cross section of Mie scattering is strong function of the void diameter. 

 

 
 
Fig. 2 Angular distribution of light scattered by the void in a dielectric medium. 
Left: λ (equiv. vacuum) =200nm, Center: λ=400 nm, Right: λ=800 nm. 



 
 

  
Fig. 3. Intensity of Mie scattering versus void diameter (mono-disperse systems). 

 
   Fig. 3 shows the expected signal intensity versus diameter of the bubble.  We can 
conclude that: 
(a) Forward Rayleigh scattering (θ = 30deg, q < 0.4 )  
   The cross section of forward scattering is a very sensitive function of the void 
radius (σ ∝ a6). Therefore the signal observed from the front side is dominated by 
light scattered by the largest bubbles in the illuminated volume. The strong signal 
from these large bubbles dominates over the weak signal from smaller bubbles.  
 
(b) Forward Mie scattering (θ = 30deg, 0.4 < q < 3 )  

When the bubble diameter is comparable to the wavelength, the cross section of 
forward scattering (θ = 30 deg.) is proportional to its geometrical cross-section (σ ∝ 
a2).  
 
 (c) When the scattering angle is large (θ = 150 deg.), the transition point of Rayleigh 
and Mie scattering moves to the shorter wavelength side. Then, the cross-section is 
roughly proportional to the geometrical cross-section (σ ∝ a2). 
 

Rayleigh 
σ ∝ a6 

σ ∝ a2 

Mie 
σ ∝ a2 



 
Expected angular distribution with various bubble size distributions 
(polydisperse systems) 
 
When the arrangement of the bubbles in the medium is random (not periodic) and 
bubbles are well separated, light scattered by each bubble is considered to be 
incoherent, and the angular distribution of light scattered by those bubbles is 
calculated as the sum of the light intensity scattered by each bubble.  
 
Fig. 4 shows distributions of bubbles we assumed in the model, and Fig 5. shows the 
corresponding expected angular distributions of scattered light.  
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   Fig. 4 Distributions of bubbles we assumed in the model. The power low curves 
(population scales inversely proportional to 3rd or 4th order of the bubble size) were 
multiplied by 100 for better visibility. 
 
 
 
 



10-5

0.0001

0.001

0.01

0.1

1

0 50 100 150 200

Angular distribution

Gauss a=0.8, sigma 0.05um
Gauss a=0.8, sigma 0.1um
DB GAUSS 0.4+0.8 um
Step cut off at 0.8 um

In
te

ns
ity

 (A
. U

. )

Theta (deg.)

10-5

0.0001

0.001

0.01

0.1

1

0 50 100 150 200

Angular distribution

Power 3rd
Power 4th
Exp. 0.15 um
Exp. 0.1 um

In
te

ns
ity

 (A
. U

. )

Theta (deg.)

 
 

Fig. 5 Expected angular distribution of Mie scattering 
 
 
The distributions and results are: 

(1) Gaussian distribution, mean diameter 0.8 µm, st. dev. 0.05 µm. 
The angular distribution is almost identical to that expected from a uniform void 
diameter of 0.8 µm.  The angular distribution has darker bands corresponding to 
mean diameter of the bubbles. 
 

(2) Gaussian distribution, mean diameter 0.8 µm, st. dev. 0.1 µm. 
The angular profile is similar to (1), but the dark bands are more smoothed due to 
the overlapping of light scattered by different diameter bubbles. Even this narrow 
distribution width is sufficient to smooth out the bubble size information included 
in the dark band structure. 

 
(3) Step function, cutoff  at 0.8 µm. 

Since the cross section of Mie scattering is a strong function of the bubble size, 
the Mie scattering signal from the largest bumps (cut off around 0.8 µm) 
dominates the signal. The overall shape is similar to (2) because smaller bubbles 
are not contributing to the detected signal. 
 

(4) Double Gaussian, mean diameter 0.4 µm and 0.8 µm. 
The Mie scattering signal from 0.8 µm bubbles is dominating the results. The Mie 
scattering signal from 0.4 µm bubbles are not contributing significantly to the 
scattering. 
 

(5) Power law,  3rd order, cutoff 0.8 µm. 



The angular distribution has no dark bands or distinctive features. All dips and 
peaks are smoothed out.  
 

(6) Power law, 4th order, cutoff 0.8 µm. 
As in (5), the profile has no dips or peaks.  However, compared with (5), it 
appears that the contrast of forward and backward scattering could be used to 
infer the index of the power law. 

 
(7) Exponential, slope 1/e every 0.15 µm, cutoff 0.8 um. 

The results are similar to (5) but with more backscattering.  
 
       (8) Exponential, slope 1/e every 0.1 µm, cutoff 0.8 µm 
             Compared to (7), this profile has more backscattering. 

 
Conclusion 
The angular distribution of scattered light may provide a rough idea of the bubble 
size population. Larger bubbles in the Mie scattering region give more forward 
scattering. For smaller bubbles, light is scattered by Rayleigh scattering which has 
a more uniform angular distribution.  
 

 
V. Spectrum of light scattered by bubbles at a fixed angle. 

 
(A) Observation of forward scattering from 30 degrees 

 
Fig. 6. shows the spectrum of scattered light observed from 30 degrees with respect to the 
direction of illumination, for the same bubble size distribution functions considered 
above. 
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Fig 6. Spectrum white light scattered at 30 degrees. 

 
 
(1) Gaussian distribution, mean diameter 0.8 µm, st. dev. 0.05 µm. 

The expected spectrum is almost identical to that expected from uniform 0.8 µm 
bubbles. It has resonance structures corresponding to the most probable bubble 
size. 
 

(2) Gaussian distribution, mean diameter 0.8 µm, st. dev. 0.1 µm. 
The spectrum is similar to (1), but resonances on the shorter wavelength side are 
smoothed out. 
 

(3) Step function, cutoff at 0.8 µm. 
The result is almost identical to that of (1) and (2), because the largest bubbles 
around the cutoff (0.8 µm) are dominating the signal. 
 

(4) Double Gaussian, mean diameters 0.4 µm and 0.8 µm. 
The signal from 0.8 µm bubble is dominating the results. The scattering from 0.4 
µm bubbles is not significant. 
 

(5) and (6) Power law, 3rd and 4th order, cutoff 0.8 µm. 
The slope of the spectrum (or “color temperature”) of the scattered light has some 
dependence on the index of the power law of the bubble distribution. The steeper 
the distribution, the higher the “color temperature”. 

  
(7) and (8) Exponential distributions with slope 1/e every 0.15 and 0.1 µm. 



The results are similar to (6) and (7), but with less scattering at short 
wavelengths because of fewer bubbles with diameters smaller 0.3 µm. These 
results suggesting that it may possible to distinguish between bubble distributions 
(7) and (8) by spectroscopy of scattered white light. 

 
 
(B) Spectrum vs. maximum bubble size 
 
We also set the cutoff diameter smaller (0.4 µm instead of 0.8 µm) as a test of the 
sensitivity of the spectra to the cutoff diameter.  
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Fig. 7. Cutoff of the bubble distribution was set to 0.4µm. 
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Fig. 8. Maximum bubble size vs. expected spectra of scattered light. 
 
 
As expected, spectral features similar to (A) were observed, but with everything shifted 
to lower wavelengths.  The relatively gradual slope in the shorter wavelength region is 
Mie scattering. If the bubble distribution is monodisperse, the scattered light spectrum 
has a large resonance peak approximately at the diameter of the bubble.  When the 
wavelength is longer than the cutoff of the bubble diameter distribution (0.4µm), 
Rayleigh scattering is dominating, and the intensity of the scattered light is scaling 
approximately as the inverse 4th power of the wavelength.  
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(C) Observation of back scattering from 150 degrees 
    
 

In order to check how the spectra of scattered light responds to the bubble size 
distribution, back scattering towards θ = 150 degrees was calculated. Figure 9 
shows the result. The spectrum of backscattered lights has very little wavelength 
dependence, like light scattering by a “white cloud”, and the response is almost 
independent of the bubble distribution. Therefore, spectral measurements of back 
scattering are not useful for measuring bubble size distributions. 
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Figure 9. Calculated spectra of light scattered to 150 degrees. 



 

  
Figure 10. Spectra of white light scattered by 0.3 µm and 0.6 µm bubbles toward 
30 and 150 degrees. 
 

This phenomenon is shown more clearly in Fig. 10. The forward scattering has a clear 
transition between Mie scattering in visible wavelength region (scattering cross-section σ 
is independent of wavelength) and Rayleigh scattering (σ ∝ λ-4). The modulation in cross 
section can be observed if the sample has uniform bubble sizes. If the bubble size 
distribution has finite width, this modulation will be smoothed out. However, the large 
structure of forward scattering (transition between Mie and Rayleigh scattering) will not 
be smoothed out. Therefore, the spectrum of forward scattering can provide information 
on the population of bubble sizes even though the accuracy is limited by the sharpness of 
the transition between Mie scattering and Rayleigh scattering. 

 

Rayleigh 
σ ∝ λ-4 

Mie 
σ ∝const. 

D = 0.6 µm 

D = 0.3 µm 



VI. CONCLUSION 
 
   I studied feasibility of the static light scattering method for size distribution 
measurement of 3He bubbles in DT ice layer. The static light scattering method is aiming 
to infer the size distribution of bubbles in dielectric medium by analyzing angular 
distribution or spectral dispersion of lights scattered by bubbles.  
 
   When all the bubbles have the same radius (i.e. monodisperse), in angular or spectral 
distribution of scattered light has many microscopic structures (peaks and dips) which is 
characteristic to the bubble size. Then position of those dips and peaks in observed 
scattered light can be used to infer the bubble size. If the bubble size has finite 
distribution (i.e. polydisperse), those microscopic structure are smoothed out and can not 
be used for bubble size distribution measurement. 
 
   The distribution of 3He bubbles in DT ice layer is considered to be polydisperse. 
Therefore it is not possible to measure the bubble size distribution from the microscopic 
feature of scattered light.  
 
   However, even microscopic features are smoothed out, the spectral distribution of the 
scattered light still has distinguishable macroscopic transition between Mie scattering 
region (the scattering cross-section σ independent to the wavelength) and Rayleigh 
scattering region (σ ∝ λ-4). With using this transition, it is possible to roughly infer the 
distribution of bubbles. As shown in Fig. 6 and Fig 8, the spectrum of scattered light 
observed from 30degree showed different spectra for different bubble distribution even in 
polydisperse case. 
 
   Since the transition between Mie and Rayleigh scattering is gradual, expected 
measurement accuracy of  bubble diameter is limited. This method is not sensitive to 
small difference nor distortion of bubble size distribution.(like peaks / valleys on broad 
distribution function). 
 
   The scattered light signal can be dominated by light scattering from interrogated ice 
volume. Therefore, existence of sparse but large bubble can strongly affect the result.  
 
   Considering those drawbacks, I conclude that this static light scattering method can be 
useful for relative measurement of the bubble distribution when the distribution curve is 
reproducible and well characterized. For example, a temporal growth of bubble size 
distribution or relative comparison of bubble densities in different samples can be done 
with this method. 
 
   If the bubble size distribution is unknown or the distribution is not reproducible, 
interpretation of data can be complicated and this method will not provide quantitative 
information. 
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